130 research outputs found

    Stable Solutions of the Double Compactified D=11 Supermembrane Dual

    Get PDF
    The hamiltonian formulation of the supersymmetric closed 2-brane dual to the double compactified D=11 closed supermembrane is presented. The formulation is in terms of two U(1) vector fields related by the area preserving constraint of the SUSY 2-brane. Stable solutions of the field equations, which are local minima of the hamiltonian, are found. In the semiclassical approximation around the stable solutions the action becomes the reduction of D=10 Super-Maxwell to the worldvolume. The solutions carry RR charges as a type of magnetic charges associated with the worldvolume vector field. The geometrical interpretation of the solution in terms of U(1) line bundles over the worldvolume is obtained.Comment: 14 pages, late

    SMA observations of the proto brown dwarf candidate SSTB213 J041757

    Full text link
    Context. The previously identified source SSTB213 J041757 is a proto brown dwarf candidate in Taurus, which has two possible components A and B. It was found that component B is probably a class 0/I proto brown dwarf associated with an extended envelope. Aims. Studying molecular outflows from young brown dwarfs provides important insight into brown dwarf formation mechanisms, particularly brown dwarfs at the earliest stages such as class 0, I. We therefore conducted a search for molecular outflows from SSTB213 J041757. Methods. We observed SSTB213 J041757 with the Submillimeter Array to search for CO molecular outflow emission from the source. Results. Our CO maps do not show any outflow emission from the proto brown dwarf candidate. Conclusions. The non-detection implies that the molecular outflows from the source are weak; deeper observations are therefore needed to probe the outflows from the source.Comment: 7 pages, 4 figures, accepted for publication in A&

    Transition from Diffusive to Localized Regimes in Surface Corrugated Optical Waveguides

    Full text link
    Exact calculations of the transmittance of surface corrugated optical waveguides are presented. The elastic scattering of diffuse light or other electromagnetic waves from a rough surface induces a diffusive transport along the waveguide axis. As the length of the corrugated part of the waveguide increases, a transition from the diffusive to the localized regime is observed. This involves an analogy with electron conduction in nanowires, and hence, a concept analogous to that of ``resistance'' can be introduced. We show an oscillatory behavior of both the elastic mean free path and the localization length versus the wavelength.Comment: 3 pages, REVTEX, 3 PS figure

    Logistic regression for simulating damage occurrence on a fruit grading line

    Get PDF
    Many factors influence the incidence of mechanical damage in fruit handled on a grading line. This makes it difficult to address damage estimation from an analytical point of view. During fruit transfer from one element of a grading line to another, damage occurs as a combined effect of machinery roughness and the intrinsic susceptibility of fruit. This paper describes a method to estimate bruise probability by means of logistic regression, using data yielded by specific laboratory tests. Model accuracy was measured via the statistical significance of its parameters and its classification ability. The prediction model was then linked to a simulation model through which impacts and load levels, similar to those of real grading lines, could be generated. The simulation output sample size was determined to yield reliable estimations. The process makes it possible to derive a suitable line design and the type of fruit that should be handled to maintain bruise levels within European Union (EU) Standards. A real example with peaches was carried out with the aid of the software implementation SIMLIN®, developed by the authors and registered by Madrid Technical University. This kind of tool has been demanded by inter-professional associations and grading lines designers in recent year

    Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by Hot-Wire CVD

    Get PDF
    Hydrogenated nanocrystalline silicon (nc-Si:H) obtained by hot-wire chemical vapour deposition (HWCVD) at low substrate temperature (150 °C) has been incorporated as the active layer in bottom-gate thin-film transistors (TFTs). These devices were electrically characterised by measuring in vacuum the output and transfer characteristics for different temperatures. The field-effect mobility showed a thermally activated behaviour which could be attributed to carrier trapping at the band tails, as in hydrogenated amorphous silicon (a-Si:H), and potential barriers for the electronic transport. Trapped charge at the interfaces of the columns, which are typical in nc-Si:H, would account for these barriers. By using the Levinson technique, the quality of the material at the column boundaries could be studied. Finally, these results were interpreted according to the particular microstructure of nc-Si:H

    A thermophysical study of the melting process in alkyl chain metal n-alkanoates: The thallium (I) series

    Full text link
    The peculiar thermal behavior of the thallium(I) n-alkanoates series (consisting in several transitions between polymorphic and mesomorphic phases) in comparison with other metallic n-alkanoates series is stated. The allowance of highly accurate adiabatic heat capacity data permits a study of the CH2CH2 contributions to the lattice heat capacity curve at low temperature. Moreover, in this series an anomalous gradual enhancement of the lattice heat capacity has been interpreted from vibrational spectroscopy results as a noncooperative effect due to the internal hindered rotation of the alkyl chain (formation of gauche defects, even in the solid state). The thermodynamics of the “stepwise melting process” from the totally ordered solid at low temperature to the isotropic liquid is based on a revised lattice heat-capacity curve. This was used to evaluate the energy and entropy not only of the clear first order transitions present in the series but also of the described noncooperative effect. The CH2CH2 enthalpy and entropy contribution for this series is estimated and a comparison with the published values for other series is carried out. Moreover, the texture of the mesophases is revealed by polarized light microscopy. © 1999 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69602/2/JCPSA6-111-8-3590-1.pd

    Latest Santonian to latest Maastrichtian planktic foraminifera and biostratigraphy of the hemipelagic successions of the Prebetic Zone (Murcia and Alicante provinces, south-east Spain)

    Get PDF
    This paper presents the first detailed biostratigraphic analysis of the uppermost Santonian through uppermost Maastrichtian hemipelagic carbonate successions of south-east Spain based mainly on the stratigraphic distributions of planktic foraminifera. For the time interval studied, seven biozones of planktic foraminifera have been recognized. From oldest to youngest these are: the uppermost part of the Dicarinella asymetrica Zone, and the Globotruncanita elevata, Globotruncana ventricosa, Globotruncanita calcarata, Globotruncana falsostuarti, Gansserina gansseri and Abathomphalus mayaroensis zones. The biostratigraphic succession obtained from the sections studied in the Prebetic area is compared with those from sections in Tercis (France) and Kalaat Senan (Tunisia)

    Raman microstructural analysis of silicon-on-insulator formed by high dose oxygen ion implantation: As-implanted structures

    Get PDF
    A microstructural analysis of silicon-on-insulator samples obtained by high dose oxygen ion implantation was performed by Raman scattering. The samples analyzed were obtained under different conditions thus leading to different concentrations of defects in the top Si layer. The samples were implanted with the surface covered with SiO2 capping layers of different thicknesses. The spectra measured from the as-implanted samples were fitted to a correlation length model taking into account the possible presence of stress effects in the spectra. This allowed quantification of both disorder effects, which are determined by structural defects, and residual stress in the top Si layer before annealing. These data were correlated to the density of dislocations remaining in the layer after annealing. The analysis performed corroborates the existence of two mechanisms that generate defects in the top Si layer that are related to surface conditions during implantation and the proximity of the top Si/buried oxide layer interface to the surface before annealing
    corecore